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Today’s Agenda

e Midterm Recap
e Final Project
e Recurrent Neural Networks



Midterm

e Problem was designed to be challenging
o  Similar images with different target values
o Bushes vs trees
o Summer vs fall
o Some odd (non-tree) images mixed in
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Final Project - Project Categories

Choose a project that aligns with your interests and utilizes deep learning as part of the solution.
You may pick one of the three following categories of projects.

Application Project: We expect most students will pick this category. Pick a problem or application that
interests you. Consider whether there are suitable datasets available already or whether you will have to
augment or create a dataset. Outcomes are expected to be implementation with an accompanying github repo
and a report.

Algorithmic Project: In this category, you will develop a new deep learning algorithm or substantively improve
an existing one. One would typically benchmark against some well known dataset and show non-trivial
improvement over prior work. Outcomes would typically be a short conference style article and an
implementation with a github repo.

Theoretical Project: Prove an interesting property of a new or existing learning algorithm. For a purely
theoretical project, the output may only be a conference style report, but an implementation (and accompanying
GitHub repo) may be appropriate as well.

It's possible that your project may blend more than one category.



Final Project - Ideas?

e Something new (to you)
e Something interesting to you
e Something where you know where to get data (not a lot of time here)

Last semester’s project presentations
https://mymedia.bu.edu/channel/channelid/340650712



https://mymedia.bu.edu/channel/channelid/340650712

Final Project - Timeline (updated since syllabus)

e 10/28 proposal draft due < share in class for more feedback?
o 10/30 proposal draft feedback

e 11/4 proposal final due
o 11/6 proposal final feedback

e 11/20 midpoint check in
e 12/6 project due
e 12/9 project presentation in class



Topics

Plain (vanilla) Recurrent Neural Network
Problem of vanishing gradients

Long Short-Term Memory

Gradient Recurrent Unit

Example applications

Sequence to Sequence Learning



Motivation

e \We want to process a sequence of data like text, digitized speech, video
frames, eftc.
e \Want past samples to influence output from current sample
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Recurrent Neural Network
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Understanding LSTM Networks, C. Colah Blog Post
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Unrolled view over time
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In this case you are emitting an output for every input token

Unrolled network is fed sequentially (not all at once)

Understanding LSTM Networks, C. Colah Blog Post


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Network — Weight Matrices
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S&LP, Jurafsky & Martin



Unrolled Network
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A simple recurrent neural network shown unrolled in time. Network layers are recalculated for
each time step, while the weights U, V and W are shared across all time steps.

The weights, U, W and
V, are the same at
each time step. Only
the inputs (x, h. )
change.

S&LP, Jurafsky & Martin



Different RNN configurations

one to one one to many many to one many to many many to many

Output

State o | - o] | | o] || || || ||

Inputs

(a) (b) (c) (d) (e)

Regular Feed Forward Network

E.g. sentiment analysis from string of words or characters
E.g. machine translation such as English to French

(a)
T T T m TG (b) E.g.image captioning —input 1 image, outputs sequence of words
(c)
)
)

Synced sequence input and output, e.g. video frame-by-frame action classification or
text generation



RNN next letter prediction example

target chars:

output layer

hidden layer

input layer

input chars:

‘g” ik P G
1.0 05 0.1 0.2
2.2 0.3 0.5 15
-3.0 1.0 1.9 -0.1
4.1 1.2 S 27
T fwm
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Output is probability or likelihood over
the vocabulary

Hidden layer encodes history, here e.g.
length 3.

One-hot encoded input of vocabulary
length, e.g. (‘h’, ‘€', ‘', ‘0’)



Training an RNN

import torch.nn as nn

class RNN(nn.Module):
def _init_ (self, input_size, hidden_size, output_size):
super().__init_ ()

self.hidden_size = hidden_size

self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.h2o0 = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)

def forward(self, input, hidden): Simple feed forward network.
combined = torch.cat((input, hidden), 1)

hidden = self.i2h(combined)

output = self.n2o(hidden) History and recurrence
output = self.softmax(output) d ide th el
return output, hidden Mmanage outside the moade

def initHidden(self):
return torch.zeros(1, self.hidden_size)

https://pytorch.org/tutorials/intermediate/char_rnn_classification tutorial.html



https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Training an RNN — Same Backprop as FFN

# If you set this too high, it might explode. If too low, it might not learn
learning_rate = 0.005

def train(category_tensor, line_tensor):
hidden = rnn.initHidden() Managing recurrence.

| g _ e e
rnn.zero_grad() Single output for classification in

for i in range(line_tensor.size()[0]): this case.
output, hidden = rnn(line_tensor]i], hidden)

loss = criterion(output, category_tensor)
loss.backward() .

Needs to save a lot for

# Add parameters' gradients to their values, multiplied by learning rate backpropagatlon.
for p in rnn.parameters():
p.data.add_(p.grad.data, alpha=-learning_rate) # in-place addition
return output, loss.item() “Back propagation Through Time”, e.g. BPTT

https://pytorch.org/tutorials/intermediate/char _rnn_classification tutorial.html



https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Loss Calculation for Sequence
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The probability that the model
assigns to the next word in the
training sequence.

S&LP, Jurafsky & Martin
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Problem of vanishing gradients
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Tokens from earlier in the sequence can
influence the current output

But for plain RNNs, the influence can
reduce rapidly the further the sequence

difference

Understanding LSTM Networks, C. Colah Blog Post



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Why not exploding gradients?

Tokens from earlier in the sequence can
influence the current output
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Understanding LSTM Networks, C. Colah Blog Post



http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Redrawing RNN

Redraw the RNN in slightly more

detail @

Neural Network Layer:
ht - tanh(W . [ht—l’ xt] + b)

tanh(), R - [-1,1]

Understanding LSTM Networks, C. Colah Blog Post



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

First redraw RNN

The repeating module in a standard RNN contains a single layer.

O—>>—>—<

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy



Long Short Term Memory (LSTM)
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The repeating module in an LSTM contains four interacting

layers.
Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Lopy



LSTM — Cell State




LSTM -- Forgetting Gate

fe=0Wg-[hi—1,2¢] + by)

Decides what part of cell state to suppress



LSTM — Cell state update

Input Gate Layer

| it =0 (Wi-lhi—1,2¢] + b;)
: ét Ztanh(WC-[ht_l,a:t] —+ bc)

[L Candidate Cell State
Tt




LSTM — Apply changes to cell state
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LSTM — Output and Hidden State Update

hi—1

Output Gate
Ot = 0 (Wo [ht—laxt] + bo)
ht = oy * tanh (C})

Next hidden state and output



Long Short Term Memory (LSTM)

output A

”forget gate” gate
(= '\ct_l B C.@
_§
tanh |
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mputgate and New
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Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Neural Network Layer:
out; = activation(W - [hs_1,x¢] + b)

o —Sigmoid, R = [0,1]

tanh(), R - [—1,1]

Understanding LSTM Networks, C. Colah Blog Post

Illustrated Guide to LSTM'’s and GRU’s, M. Phi Blog Post


http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

LSTM — What does this look like?
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A little bit like a residual network? Similar motivation to have clear gradient path...
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Gradient Recurrent Unit

n

* Combines the forget and input gates into a single “update gate.
* Merges the cell state and hidden state

The resulting model is simpler than standard LSTM models.
Results are mixed.

hy
hi_1 ™\ L it — 0 (Wz : [ht—laxt])

f LR\ /1
S CO—®
% $ re =0 (Wr : [ht—lvajt])
Tt 2t iLt ~
|cJ;| fo] [tenn] hy = tanh (W - [ry % hy_1, 7¢])
L ) o i
— ) t—(l—Zt)*ht—1+Zt*ht

K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation.” arXiv, Sep. 02, 2014. doi: 10.48550/arXiv.1406.1078.



https://doi.org/10.48550/arXiv.1406.1078
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Andrej Karpathy blog

About

The Unreasonable Effectiveness of Recurrent Neural

Networks

May 21, 2015

Trained on complete works of Shakespeare

3-layer RNN with 512 hidden nodes on each

layer.

Trained for a few hours on a GPU

PANDARUS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.



Andrej Karpathy blog About

Trained and

The Unreasonable Effectiveness of Recurrent Neural Generated
Networks Wikipedia Content

May 21, 2015
{ { cite journal | id=Cerling Nonforest Department|format=Newlymeslated|none } }
Naturalism and decision for the majority of Arab countries' capitalide was grounded ' 'www.e—complete" .
by the Irish language by [[John Clairll, [[An Imperial Japanese Revolt]], associated - . . .
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal See also''': [[List of ethical consent processing]]

in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The

emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the [[Thralesl]], [[Cynth's Dajoardll, known

== See also ==
*[[Iender dome of the EDI]]
*[[Anti-autism]]

in western [[Scotland]], near Italy to the conquest of India with the conflict. ===[[Religion|Religion] ]===
Copyright was the succession of independence in the slop of Syrian influence that *[[French Writings]]
was a famous German movement based on a more popular servicious, non-doctrinal *[[Marial]

*[[Revelation]]

and sexual power post. Many governments recognize the military housing of the R epr]

[[Civil Liberalization and Infantry Resolution 265 National Party in Hungaryll,
that is sympathetic to be to the [[Punjab Resolutionl]
(PJS) [http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89. htm Official economics Adjoi
was swear to advance to the resources for those Sociali
was starting to signing a major tripad of aid exile.]]

== External links==
* [http://www.bibleaatewav.nih.aov/entrepre/ Website of the World Festival. The labour

<page>
<title>Antichrist</title>
<id>865</id>
<revision>
<i4>15000676</id> Structured Markdown
<timestamp>2002-08-03T18:14:127</timestamp>
<contributor>
<username>Paris</username>
<id>23</id>
</contributor>
<minor />
Va ||d XML <comment>Automated conversion</comment>
<text xml:space="preserve">#REDIRECT [[Christianity]]</text>
</revision>
</page>

1stitution of the Netherlands and Hispanic Competition



Counterpoint: N-gram stats are similarly good?
Replies:

e Yoav Goldberg compared these RNN results to n-gram maximum likelihood (counting) baseline

This was a good reply, but unfortunately the linked notebook is no longer
available.

e (Google made a dataset of “n-grams” available in 2006
o https://research.google/blog/all-our-n-gram-are-belong-to-you/



https://research.google/blog/all-our-n-gram-are-belong-to-you/

Counterpoint: N-gram stats are similarly good?

“We processed 1,024,908,267,229 words of running text and are publishing the
counts for all 1,176,470,663 five-word sequences that appear at least 40 times.
There are 13,588,391 unique words, after discarding words that appear less than
200 times.”

e You can use longest prefix matches on this data to get similar quality results.
e \ery limited pattern matching - does not have equivalent of find and replace.



@ Deep Visual-Semantic Alignments for Generating Image 5
Descriptions

Multimodal Recurrent Neural Network

Our Multimodal Recurrent Neural Architecture generates sentence descriptions from images. Below are a few examples of
generated sentences:

“straw” “hat” END

'man in black shirt is "construction worker in "two young girls are "boy is doing backflip on
playing guitar." orange safety vest is playing with lego toy." wakeboard."

working on road." START “straw” “hat”

Figure 4. Diagram of our multimodal Recurrent Neural Network
generative model. The RNN takes a word, the context from previ-
ous time steps and defines a distribution over the next word in the
sentence. The RNN is conditioned on the image information at the
first time step. START and END are special tokens.

\

"girl in pink dress is "black and white dog "young girl in pink shirt is "man in blue wetsuit is
jumping in air." jumps over bar." swinging on swing." surfing on wave."




What else can be done with an RNN?

e Any kind of text analysis
o Sentiment analysis was common

e Image analysis

o Pixel by pixel or chunks at a time
o Classification?

But these were weak / had frequent trouble...



Sequence to Sequence Learning

Powerful LSTMs (2014) and hints of their limits...

W X Y z <EOS>
A A A A A
> > — — > > >
T T T A Y Y Y Y
A B C <EOS> w X Y Z

https://proceedings.neurips.cc/paper files/paper/2014/hash/al4ac55a4f27472c5d894ec1c3c743d2-Abstract.html



https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Sequence to Sequence Applications

Text completion (generalizing previous examples)
Machine translation

Various other string / sentence manipulation
Question answering



Sequence to Sequence State

2D PCA of Internal State

i OMary admires John

- OMary is in love with John

OMary respects John
| OJohn admires Mary

- OJohn is in love with Mary

OdJohn respects Mary

-
-
-
-

101

=10

O In the garden , | gave her a card

O | was given a card by her in the garden

O In the garden , she gave me a card
O She gave me a card in the garden

O She was given a card by me in the garden

O | gave her a card in the garden

1 1

L

J

-20
=15

0 5

10

15

20



Sequence to Sequence Learning

“One of the attractive features of our model is its ability to turn a sequence of
words into a vector of fixed dimensionality.”



Sequence to Sequence Learning

“Finally, we found that reversing the order of the words in all source sentences
(but not target sentences) improved the LSTM's performance markedly, because
doing so introduced many short term dependencies between the source and the
target sentence which made the optimization problem easier.”



Andrej Karpathy blog About

The Unreasonable Effectiveness of Recurrent Neural
Networks

May 21, 2015

Inductive Reasoning, Memories and Attention.

The first convincing example of moving towards these directions was developed in DeepMind’s Neural Turing
Machines paper. This paper sketched a path towards models that can perform read/write operations between
large, external memory arrays and a smaller set of memory registers (think of these as our working memory)
where the computation happens. Crucially, the NTM paper also featured very interesting memory addressing
mechanisms that were implemented with a (soft, and fully-differentiable) attention model. The concept of soft
attention has turned out to be a powerful modeling feature and was also featured in Neural Machine Translation
by Jointly Learning to Align and Translate for Machine Translation and Memory Networks for (toy) Question
Answering. In fact, I'd go as far as to say that

The concept of attention is the most interesting recent architectural innovation in neural networks.



A Brief History of Transformers

2000

2014

2014

Yoshua

Ilya
Bengio*

Sutskever*

pdd A

A Neural Probabilistic
Language Model

i-th output = P(w, = i| context)

Seq-to-Seq Learning with
Neural Networks
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*And others; Chronological analysis inspired by Andrej Karpathy's lecture, youtube.com/watch?v=XfoMkf4rD6E

© SuperDataScience | Join our Al Learning Community at www.superdatascience.com

Dzmitry
Bahdanau*

ATeam
at Google

entio”

Attention is all you need

Neural Machine Translation
by Jointly Learning to Align
and Translate

Output
Probabilities

Positional
Encoding

Positional
[§

Encoding
Input Output
Embedding Embedding

Inputs Qutputs
(shifted right)

iyt ey o




Very Recent Update: Were RNNs All We Needed?

“The scalability limitations of Transformers regarding sequence length have renewed interest in
recurrent sequence models that are parallelizable during training. As a result, many novel
recurrent architectures, such as S4, Mamba, and Aaren, have been proposed that achieve
comparable performance. In this work, we revisit traditional recurrent neural networks (RNNs)
from over a decade ago: LSTMs (1997) and GRUs (2014). While these models were slow due to
requiring to backpropagate through time (BPTT), we show that by removing their hidden state
dependencies from their input, forget, and update gates, LSTMs and GRUs no longer need to
BPTT and can be efficiently trained in parallel. Building on this, we introduce minimal versions
(minLSTMs and minGRUSs) that (1) use significantly fewer parameters than their traditional
counterparts and (2) are fully parallelizable during training (175x faster for a sequence of length
512). Lastly, we show that these stripped-down versions of decade-old RNNs match the
empirical performance of recent sequence models.”

https://arxiv.org/abs/2410.01201



https://arxiv.org/abs/2410.01201

Feedback?




