
Deep Learning for Data Science
DS 542

Lecture 14
Recurrent Neural Networks

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

Today’s Agenda

● Midterm Recap
● Final Project
● Recurrent Neural Networks

Midterm

● Problem was designed to be challenging
○ Similar images with different target values
○ Bushes vs trees
○ Summer vs fall
○ Some odd (non-tree) images mixed in

Midterm - Test Accuracies (5% buckets)

Final Project - Project Categories

Choose a project that aligns with your interests and utilizes deep learning as part of the solution.

You may pick one of the three following categories of projects.

 Application Project: We expect most students will pick this category. Pick a problem or application that
interests you. Consider whether there are suitable datasets available already or whether you will have to
augment or create a dataset. Outcomes are expected to be implementation with an accompanying github repo
and a report.

 Algorithmic Project: In this category, you will develop a new deep learning algorithm or substantively improve
an existing one. One would typically benchmark against some well known dataset and show non-trivial
improvement over prior work. Outcomes would typically be a short conference style article and an
implementation with a github repo.

 Theoretical Project: Prove an interesting property of a new or existing learning algorithm. For a purely
theoretical project, the output may only be a conference style report, but an implementation (and accompanying
GitHub repo) may be appropriate as well.

It’s possible that your project may blend more than one category.

Final Project - Ideas?

● Something new (to you)
● Something interesting to you
● Something where you know where to get data (not a lot of time here)

Last semester’s project presentations
https://mymedia.bu.edu/channel/channelid/340650712

https://mymedia.bu.edu/channel/channelid/340650712

Final Project - Timeline (updated since syllabus)

● 10/28 proposal draft due ← share in class for more feedback?
○ 10/30 proposal draft feedback

● 11/4 proposal final due
○ 11/6 proposal final feedback

● 11/20 midpoint check in
● 12/6 project due
● 12/9 project presentation in class

Topics
● Plain (vanilla) Recurrent Neural Network
● Problem of vanishing gradients
● Long Short-Term Memory
● Gradient Recurrent Unit
● Example applications
● Sequence to Sequence Learning

Motivation
● We want to process a sequence of data like text, digitized speech, video

frames, etc.
● Want past samples to influence output from current sample

References
1. Understanding LSTMs, Colah’s blog, 2015,

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
2. Speech and Language Processing. Daniel Jurafsky & James H. Martin. Draft

of January 5, 2024. – Chapter 9, RNNs and LSTMs,
https://web.stanford.edu/~jurafsky/slpdraft/9.pdf

3. The Unreasonable Effectiveness of LSTMs, Andrej Karpathy, 2015,
https://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://web.stanford.edu/~jurafsky/slpdraft/9.pdf
https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Network

Understanding LSTM Networks, C. Colah Blog Post

Input at time/step t

Neural
Network
Layers

Output Activation

Hidden state at time/step t-1

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled view over time

Understanding LSTM Networks, C. Colah Blog Post

RNN

Delay
Memory

D D D

Unrolled RNN

In this case you are emitting an output for every input token

Unrolled network is fed sequentially (not all at once)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Network – Weight Matrices

S&LP, Jurafsky & Martin

Unrolled Network

The weights, U, W and
V, are the same at
each time step. Only
the inputs (x

t
, h

t-1
)

change.

S&LP, Jurafsky & Martin

Different RNN configurations

Output

State

Inputs

(a) (b) (c) (d) (e)

(a) Regular Feed Forward Network
(b) E.g. image captioning – input 1 image, outputs sequence of words
(c) E.g. sentiment analysis from string of words or characters
(d) E.g. machine translation such as English to French
(e) Synced sequence input and output, e.g. video frame-by-frame action classification or

text generation

Transforms

RNN next letter prediction example

Output is probability or likelihood over
the vocabulary

One-hot encoded input of vocabulary
length, e.g. (‘h’, ‘e’, ‘l’, ‘o’)

Hidden layer encodes history, here e.g.
length 3.

Training an RNN

17

import torch.nn as nn

class RNN(nn.Module):
 def __init__(self, input_size, hidden_size, output_size):
 super().__init__()

 self.hidden_size = hidden_size

 self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
 self.h2o = nn.Linear(hidden_size, output_size)
 self.softmax = nn.LogSoftmax(dim=1)

 def forward(self, input, hidden):
 combined = torch.cat((input, hidden), 1)
 hidden = self.i2h(combined)
 output = self.h2o(hidden)
 output = self.softmax(output)
 return output, hidden

 def initHidden(self):
 return torch.zeros(1, self.hidden_size)

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Simple feed forward network.

History and recurrence
managed outside the model

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

If you set this too high, it might explode. If too low, it might not learn
learning_rate = 0.005

def train(category_tensor, line_tensor):
 hidden = rnn.initHidden()

 rnn.zero_grad()

 for i in range(line_tensor.size()[0]):
 output, hidden = rnn(line_tensor[i], hidden)

 loss = criterion(output, category_tensor)
 loss.backward()

 # Add parameters' gradients to their values, multiplied by learning rate
 for p in rnn.parameters():
 p.data.add_(p.grad.data, alpha=-learning_rate) # in-place addition

 return output, loss.item()

Training an RNN – Same Backprop as FFN

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Managing recurrence.

Single output for classification in
this case.

“Back propagation Through Time”, e.g. BPTT

Needs to save a lot for
backpropagation.

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

The probability that the model
assigns to the next word in the
training sequence.

Loss Calculation for Sequence

S&LP, Jurafsky & Martin

Topics
● Plain (vanilla) Recurrent Neural Network
● Problem of vanishing gradients
● Long Short-Term Memory
● Gradient Recurrent Unit
● Example applications
● Sequence to Sequence Learning

Problem of vanishing gradients

Understanding LSTM Networks, C. Colah Blog Post

Tokens from earlier in the sequence can
influence the current output

But for plain RNNs, the influence can
reduce rapidly the further the sequence
difference

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Why not exploding gradients?

Understanding LSTM Networks, C. Colah Blog Post

Tokens from earlier in the sequence can
influence the current output

But for plain RNNs, the influence can
reduce rapidly the further the sequence
difference

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Topics
● Plain (vanilla) Recurrent Neural Network
● Problem of vanish gradients
● Long Short-Term Memory
● Gradient Recurrent Unit
● Example applications
● Sequence to Sequence Learning

Redrawing RNN

Understanding LSTM Networks, C. Colah Blog Post

Redraw the RNN in slightly more
detail

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

First redraw RNN

25

Long Short Term Memory (LSTM)

26

LSTM – Cell State

27

LSTM -- Forgetting Gate

Decides what part of cell state to suppress

LSTM – Cell state update

29

Input Gate Layer

Candidate Cell State

LSTM – Apply changes to cell state

30

LSTM – Output and Hidden State Update

31

Output Gate

Next hidden state and output

Long Short Term Memory (LSTM)

Understanding LSTM Networks, C. Colah Blog Post
Illustrated Guide to LSTM’s and GRU’s, M. Phi Blog Post

“forget gate”

“input gate” and
new cell state

new
output

“output
gate”

C
tC

t-1

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

LSTM – What does this look like?

A little bit like a residual network? Similar motivation to have clear gradient path…

Topics
● Plain (vanilla) Recurrent Neural Network
● Problem of vanish gradients
● Long Short-Term Memory
● Gradient Recurrent Unit
● Example applications
● Sequence to Sequence Learning

Gradient Recurrent Unit

35

• Combines the forget and input gates into a single “update gate.”
• Merges the cell state and hidden state
The resulting model is simpler than standard LSTM models.
Results are mixed.

K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation.” arXiv, Sep. 02, 2014. doi: 10.48550/arXiv.1406.1078.

https://doi.org/10.48550/arXiv.1406.1078

Topics
● Plain (vanilla) Recurrent Neural Network
● Problem of vanish gradients
● Long Short-Term Memory
● Gradient Recurrent Unit
● Example applications
● Sequence to Sequence Learning

37

Trained on complete works of Shakespeare

3-layer RNN with 512 hidden nodes on each
layer.

Trained for a few hours on a GPU

38

Trained and
Generated

Wikipedia Content

Structured Markdown

Valid XML

Counterpoint: N-gram stats are similarly good?

This was a good reply, but unfortunately the linked notebook is no longer
available.

● Google made a dataset of “n-grams” available in 2006
○ https://research.google/blog/all-our-n-gram-are-belong-to-you/

https://research.google/blog/all-our-n-gram-are-belong-to-you/

Counterpoint: N-gram stats are similarly good?

“We processed 1,024,908,267,229 words of running text and are publishing the
counts for all 1,176,470,663 five-word sequences that appear at least 40 times.
There are 13,588,391 unique words, after discarding words that appear less than
200 times.”

● You can use longest prefix matches on this data to get similar quality results.
● Very limited pattern matching - does not have equivalent of find and replace.

41

What else can be done with an RNN?

● Any kind of text analysis
○ Sentiment analysis was common

● Image analysis
○ Pixel by pixel or chunks at a time
○ Classification?

But these were weak / had frequent trouble…

Sequence to Sequence Learning

Powerful LSTMs (2014) and hints of their limits…

https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Sequence to Sequence Applications

● Text completion (generalizing previous examples)
● Machine translation
● Various other string / sentence manipulation
● Question answering

Sequence to Sequence State

2D PCA of Internal State

Sequence to Sequence Learning

“One of the attractive features of our model is its ability to turn a sequence of
words into a vector of fixed dimensionality.”

Sequence to Sequence Learning

“Finally, we found that reversing the order of the words in all source sentences
(but not target sentences) improved the LSTM's performance markedly, because
doing so introduced many short term dependencies between the source and the
target sentence which made the optimization problem easier.”

48

…
…

2000

49

Very Recent Update: Were RNNs All We Needed?

“The scalability limitations of Transformers regarding sequence length have renewed interest in
recurrent sequence models that are parallelizable during training. As a result, many novel
recurrent architectures, such as S4, Mamba, and Aaren, have been proposed that achieve
comparable performance. In this work, we revisit traditional recurrent neural networks (RNNs)
from over a decade ago: LSTMs (1997) and GRUs (2014). While these models were slow due to
requiring to backpropagate through time (BPTT), we show that by removing their hidden state
dependencies from their input, forget, and update gates, LSTMs and GRUs no longer need to
BPTT and can be efficiently trained in parallel. Building on this, we introduce minimal versions
(minLSTMs and minGRUs) that (1) use significantly fewer parameters than their traditional
counterparts and (2) are fully parallelizable during training (175x faster for a sequence of length
512). Lastly, we show that these stripped-down versions of decade-old RNNs match the
empirical performance of recent sequence models.”

https://arxiv.org/abs/2410.01201

https://arxiv.org/abs/2410.01201

Feedback?

