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Today’s Agenda 

● Midterm Recap
● Final Project
● Recurrent Neural Networks



Midterm

● Problem was designed to be challenging
○ Similar images with different target values
○ Bushes vs trees
○ Summer vs fall
○ Some odd (non-tree) images mixed in



Midterm - Test Accuracies (5% buckets)



Final Project - Project Categories

Choose a project that aligns with your interests and utilizes deep learning as part of the solution.

You may pick one of the three following categories of projects.

 Application Project: We expect most students will pick this category. Pick a problem or application that 
interests you. Consider whether there are suitable datasets available already or whether you will have to 
augment or create a dataset. Outcomes are expected to be implementation with an accompanying github repo 
and a report.

 Algorithmic Project: In this category, you will develop a new deep learning algorithm or substantively improve 
an existing one. One would typically benchmark against some well known dataset and show non-trivial 
improvement over prior work. Outcomes would typically be a short conference style article and an 
implementation with a github repo.

 Theoretical Project: Prove an interesting property of a new or existing learning algorithm. For a purely 
theoretical project, the output may only be a conference style report, but an implementation (and accompanying 
GitHub repo) may be appropriate as well.

It’s possible that your project may blend more than one category.



Final Project - Ideas?

● Something new (to you)
● Something interesting to you
● Something where you know where to get data (not a lot of time here)

Last semester’s project presentations 
https://mymedia.bu.edu/channel/channelid/340650712

https://mymedia.bu.edu/channel/channelid/340650712


Final Project - Timeline (updated since syllabus)

● 10/28 proposal draft due ← share in class for more feedback?
○ 10/30 proposal draft feedback

● 11/4 proposal final due
○ 11/6 proposal final feedback

● 11/20 midpoint check in
● 12/6 project due
● 12/9 project presentation in class



Topics
● Plain (vanilla) Recurrent Neural Network
● Problem of vanishing gradients
● Long Short-Term Memory
● Gradient Recurrent Unit
● Example applications
● Sequence to Sequence Learning



Motivation
● We want to process a sequence of data like text, digitized speech, video 

frames, etc.
● Want past samples to influence output from current sample
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Recurrent Neural Network

Understanding LSTM Networks, C. Colah Blog Post
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Unrolled view over time

Understanding LSTM Networks, C. Colah Blog Post
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Unrolled RNN

In this case you are emitting an output for every input token

Unrolled network is fed sequentially (not all at once)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent Neural Network – Weight Matrices

S&LP, Jurafsky & Martin



Unrolled Network

The weights, U, W and 
V, are the same at 
each time step. Only 
the inputs (x

t
, h

t-1
) 

change.

S&LP, Jurafsky & Martin



Different RNN configurations

Output

State

Inputs

(a) (b) (c) (d) (e)

(a) Regular Feed Forward Network
(b) E.g. image captioning – input 1 image, outputs sequence of words
(c) E.g. sentiment analysis from string of words or characters
(d) E.g. machine translation such as English to French 
(e) Synced sequence input and output, e.g. video frame-by-frame action classification or 

text generation

Transforms



RNN next letter prediction example

Output is probability or likelihood over 
the vocabulary

One-hot encoded input of vocabulary 
length, e.g. (‘h’, ‘e’, ‘l’, ‘o’) 

Hidden layer encodes history, here e.g. 
length 3.



Training an RNN

17

import torch.nn as nn

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()

        self.hidden_size = hidden_size

        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.h2o = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.h2o(hidden)
        output = self.softmax(output)
        return output, hidden

    def initHidden(self):
        return torch.zeros(1, self.hidden_size)

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html 

Simple feed forward network.

History and recurrence 
managed outside the model

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html


# If you set this too high, it might explode. If too low, it might not learn
learning_rate = 0.005

def train(category_tensor, line_tensor):
    hidden = rnn.initHidden()

    rnn.zero_grad()

    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)

    loss = criterion(output, category_tensor)
    loss.backward()

    # Add parameters' gradients to their values, multiplied by learning rate
    for p in rnn.parameters():
        p.data.add_(p.grad.data, alpha=-learning_rate) # in-place addition

    return output, loss.item()

Training an RNN – Same Backprop as FFN

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html 

Managing recurrence. 

Single output for classification in 
this case.

“Back propagation Through Time”, e.g. BPTT

Needs to save a lot for 
backpropagation.

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html


The probability that the model 
assigns to the next word in the 
training sequence.

Loss Calculation for Sequence

S&LP, Jurafsky & Martin



Topics
● Plain (vanilla) Recurrent Neural Network
● Problem of vanishing gradients
● Long Short-Term Memory
● Gradient Recurrent Unit
● Example applications
● Sequence to Sequence Learning



Problem of vanishing gradients

Understanding LSTM Networks, C. Colah Blog Post

Tokens from earlier in the sequence can 
influence the current output

But for plain RNNs, the influence can 
reduce rapidly the further the sequence 
difference

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Why not exploding gradients?

Understanding LSTM Networks, C. Colah Blog Post

Tokens from earlier in the sequence can 
influence the current output

But for plain RNNs, the influence can 
reduce rapidly the further the sequence 
difference

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Topics
● Plain (vanilla) Recurrent Neural Network
● Problem of vanish gradients
● Long Short-Term Memory
● Gradient Recurrent Unit
● Example applications
● Sequence to Sequence Learning



Redrawing RNN

Understanding LSTM Networks, C. Colah Blog Post

 

Redraw the RNN in slightly more 
detail

 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


First redraw RNN
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Long Short Term Memory (LSTM)
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LSTM – Cell State
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LSTM -- Forgetting Gate

Decides what part of cell state to suppress



LSTM – Cell state update
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Input Gate Layer

Candidate Cell State



LSTM – Apply changes to cell state
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LSTM – Output and Hidden State Update
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Output Gate

Next hidden state and output



Long Short Term Memory (LSTM)

Understanding LSTM Networks, C. Colah Blog Post
Illustrated Guide to LSTM’s and GRU’s, M. Phi Blog Post

 

 

 

“forget gate”

“input gate” and 
new cell state

new 
output

“output 
gate”

C
tC

t-1

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21


LSTM – What does this look like?

A little bit like a residual network? Similar motivation to have clear gradient path…



Topics
● Plain (vanilla) Recurrent Neural Network
● Problem of vanish gradients
● Long Short-Term Memory
● Gradient Recurrent Unit
● Example applications
● Sequence to Sequence Learning



Gradient Recurrent Unit
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• Combines the forget and input gates into a single “update gate.”
• Merges the cell state and hidden state
The resulting model is simpler than standard LSTM models.
Results are mixed.

K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for 
Statistical Machine Translation.” arXiv, Sep. 02, 2014. doi: 10.48550/arXiv.1406.1078.

https://doi.org/10.48550/arXiv.1406.1078


Topics
● Plain (vanilla) Recurrent Neural Network
● Problem of vanish gradients
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Trained on complete works of Shakespeare

3-layer RNN with 512 hidden nodes on each 
layer. 

Trained for a few hours on a GPU
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Trained and 
Generated 

Wikipedia Content

Structured Markdown

Valid XML



Counterpoint: N-gram stats are similarly good?

This was a good reply, but unfortunately the linked notebook is no longer 
available.

● Google made a dataset of “n-grams” available in 2006
○ https://research.google/blog/all-our-n-gram-are-belong-to-you/

https://research.google/blog/all-our-n-gram-are-belong-to-you/


Counterpoint: N-gram stats are similarly good?

“We processed 1,024,908,267,229 words of running text and are publishing the 
counts for all 1,176,470,663 five-word sequences that appear at least 40 times. 
There are 13,588,391 unique words, after discarding words that appear less than 
200 times.”

● You can use longest prefix matches on this data to get similar quality results.
● Very limited pattern matching - does not have equivalent of find and replace.



41



What else can be done with an RNN?

● Any kind of text analysis
○ Sentiment analysis was common

● Image analysis
○ Pixel by pixel or chunks at a time
○ Classification?

But these were weak / had frequent trouble…



Sequence to Sequence Learning

Powerful LSTMs (2014) and hints of their limits…

https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html


Sequence to Sequence Applications

● Text completion (generalizing previous examples)
● Machine translation
● Various other string / sentence manipulation
● Question answering



Sequence to Sequence State

2D PCA of Internal State



Sequence to Sequence Learning

“One of the attractive features of our model is its ability to turn a sequence of 
words into a vector of fixed dimensionality.”



Sequence to Sequence Learning

“Finally, we found that reversing the order of the words in all source sentences 
(but not target sentences) improved the LSTM's performance markedly, because 
doing so introduced many short term dependencies between the source and the 
target sentence which made the optimization problem easier.”
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…
…



2000
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Very Recent Update: Were RNNs All We Needed?

“The scalability limitations of Transformers regarding sequence length have renewed interest in 
recurrent sequence models that are parallelizable during training. As a result, many novel 
recurrent architectures, such as S4, Mamba, and Aaren, have been proposed that achieve 
comparable performance. In this work, we revisit traditional recurrent neural networks (RNNs) 
from over a decade ago: LSTMs (1997) and GRUs (2014). While these models were slow due to 
requiring to backpropagate through time (BPTT), we show that by removing their hidden state 
dependencies from their input, forget, and update gates, LSTMs and GRUs no longer need to 
BPTT and can be efficiently trained in parallel. Building on this, we introduce minimal versions 
(minLSTMs and minGRUs) that (1) use significantly fewer parameters than their traditional 
counterparts and (2) are fully parallelizable during training (175x faster for a sequence of length 
512). Lastly, we show that these stripped-down versions of decade-old RNNs match the 
empirical performance of recent sequence models.”

https://arxiv.org/abs/2410.01201

https://arxiv.org/abs/2410.01201


Feedback?


